
DevOps Comes to
Database Developers and
DBAs — It’s About Time
Written by Daniel Norwood, Director of Product Marketing, Quest, and Robert Reeves,
CTO, Datical

INTRODUCTION

Application teams have tools for managing their development
lifecycle — from source code control and automated testing to
continuous integration and automated deployment. But as a
database developer or DBA, you’ve lacked the proper tooling to
help you keep pace with the rest of your organization.

You face increasing pressure to deliver database changes faster,
while you’re also responsible for ensuring that databases are
always available and applications run at peak performance. The
conventional wisdom dictates that you have to choose between
speed and quality, that you can’t go faster and reduce risk at the
same time.

Wrong.

Now your organization can apply automation to your database
development lifecycle, breaking down silos between
development and operations teams and bringing you into the
DevOps fold. With the right tools, database developers and
DBAs can finally keep up with the increasing pace of application
releases while protecting precious business data.

This white paper will explore the importance of bringing agile
and DevOps to database development and the obstacles
organizations face along the way. It describes what to look for
when selecting tools to bring the database into the world of
DevOps. Finally, it demonstrates how the right tools can bring
automation to database development and the value of DevOps
to the entire organization.

2

BACKGROUND: AGILE AND
DEVOPS

Agile development is at the core
of DevOps and the faster pace of
application releases.

Agile solves the development
bottleneck …

In a Tech Beacon survey called “Is
agile the new norm?”, 67 percent of
respondents said that they were purely
agile or leaning toward it. Companies
turn to agile to lower or eliminate
the barriers between the business
and development. They find benefits
of agile development in all of their
most important metrics: enhanced
collaboration, higher software quality,
greater customer satisfaction and lower
cost of development.

With agile, new features and bug fixes
get to market much faster and are on
point with customer requirements. Gone
are the days of spending a year and a
half at the drawing board and coming
back with a product; mobile app release
schedules have set the expectation that
users should wait no more than a couple
of weeks or days for changes.

 … and DevOps solves the release
bottleneck …

As development teams became more
agile, it naturally led to the use of more
software tools for process automation
and collaboration. Eventually, the
collaboration reached past the point
of deployment and into operations. As
depicted in Figure 1, the development
and operations teams have grown to
work together to manage code from
design through operations and back in a
truly collaborative cycle.

As collaboration improved and more
processes were automated, the value
delivered to the organization increased
as well. The Puppet Labs State of
DevOps Report shows that the value
goes far beyond speed of delivery.
Compared to companies that have not
adopted DevOps, high-performing
IT organizations enjoy 60 times fewer
failures and recover from those failures
168 times faster than their lower-
performing peers. They also deploy 30
times more frequently with 200 times
shorter ramp-up.

67 percent of survey
respondents said that
they were purely agile
or leaning toward it.

Figure 1: Evolution from agile to DevOps

Design Code Build

Va
lu

e
de

liv
er

ed

Collaboration required

Release Deploy OperateTest

DevOps

Agile

Continuous delivery

Continuous integration

http://techbeacon.com/survey-agile-new-norm
http://techbeacon.com/survey-agile-new-norm
https://puppet.com/resources/white-paper/2015-state-of-devops-report
https://puppet.com/resources/white-paper/2015-state-of-devops-report

3

… so what about the database
development bottleneck?

Agile and DevOps have brought
about great progress in application
development through the use of
automation tools and software. However,
those tools are not a good fit for the work
of database developers and DBAs, and
the lack of proper tools leaves them out
of the agile movement.

Organizations cannot enjoy all the
benefits of true agile and DevOps if they
do not include the database. Application
releases may be ready as often as every
few minutes, but as Figure 2 shows, if
they depend on database updates that
take place every month or quarter, then
the organization as a whole misses the
value of agile.

WHY IS DATABASE DEVELOPMENT
SLOWER?

Given that database development needs
to join the rest of the organization, what
gets in the way of accelerating it?

The answer goes to the nature of
databases and database development:

• For standard application development,
making changes to the front-end
application code is often more forgiving
because it is possible to revert to a
previous build if something goes wrong.
There may be some service interruption,
but the risk of losing data is usually low.

• With database development, it’s
necessary to preserve the state of the
database and protect its data throughout
code changes. This is accomplished
with complex scripting based on the
database’s current state at that time.

• Whereas application developers have
the option of reverting to a previous
version, database developers have
to jump through many more hoops to
undo changes, even restoring the entire
database in worst cases.

Application teams typically check in their
code, and then a series of automated
processes follows: build, test, review,
stage, deploy. The changes propagate
automatically through test environments
and eventually into production as they
pass automated validation. However, in
cases where there are dependencies
on database code changes, the rest
of the organization must wait because
processes at this level are still manual.

Going faster and lowering costs without
increasing risk

The reasons for going agile are to reduce
risk, lower cost and increase speed.
These also apply to automating the
database development cycle.

The dominant theme in database
development has been the trade-off
between speed and quality (risk). In
order to avoid risk, database developers
work methodically and carefully, looking
through every script in an attempt to
reduce risk. That does not lower cost or
increase speed.

Nor does it make the business more
responsive. If database changes are
the bottleneck and slowing them down
is seen as the best way to protect the
database, then organizations that crave
stability will never be completely agile.

Organizations cannot
enjoy all the benefits
of true agile and
DevOps if they do not
include the database.

Figure 2: The process of database change has become the bottleneck in an otherwise
agile process

Change

Change

Change

Change

Change

Change

Change

Change

Change

Change

Change

Change

Change

Change

Change

Change

Change

Change

Change

Change

Change

Change

Change

Change
Change Change Change Change

Change

Change

Change

Change

Change

Change

Change

4

DATABASE DEVELOPERS AND
DBAS STUCK IN THE MIDDLE

What suffers when developers try to
work faster?

• Best practices — All professional
programmers know that there are certain
practices to follow to write code properly.
When time does not allow, those
practices often go unobserved.

• Proper testing — In the rush to get code
out, many development teams feel there
is no time to create proper unit tests. As
a result, testing at the developer level
becomes limited to debugging code
and ensuring that it is not faulty. That
is necessary as a first step, but it is not
enough. The loss of unit tests increases
dependency on test teams later in the
process, slowing the release process.
Ironically, cutting this corner actually
slows things more.

• Code reviews — Although they cannot
afford it, DBAs spend a lot of time in
code review meetings. They and their
managers find themselves playing the
role of code police, trying to uphold
code quality one line at a time.

Even after navigating obstacles and
trying to build up their team for faster
development, most DBAs and database
developers are able to trim release
cycles down to two or four weeks at
best. That kind of improvement is of little
help when the application development
team is comfortably releasing several
times a day.

In short, the dilemma is to find the right
automation tool that will speed up
database development and lower cost
without risking the integrity of the data.

AUTOMATION TOOLS FOR FASTER
DATABASE DEVELOPMENT
WITHOUT COMPROMISING QUALITY

The combination of Toad and Datical
DB extends the benefits of DevOps
automation to the database environment.
It offers database developers and
DBAs the opportunity to accelerate
development while mitigating risk and
inherently reinforcing best practices.
Toad and Datical work together to create
an agile pipeline for database changes at
each step in the database development
lifecycle (see Figure 3).

1. Track discrete changes to code (Toad)

Some developers simply rely on pulling
the master version of source code from
the database, but how do they know it
wasn’t changed without their knowledge?
And what was changed before they got
there? What happens if two developers
need to change the same piece of code?
Managing code artifacts in a version
control system (VCS) is the best practice
and foundation for speeding things up.

A VCS is a reliable means of ensuring
that the right version of code is on its
way into the build system and that the
code object has full integrity. Version
control also ensures that multiple
developers in a live environment are
not overwriting one another’s changes.
It is indispensable to application
development, so Toad offers integration
with systems like Git, Microsoft TFS,
CVS, ClearCase, Perforce and SVN,
right in the integrated development
environment (IDE).

If database changes
are the bottleneck
and slowing them
down is seen as
the best way to
protect the database,
then organizations
that crave stability
will never be
completely agile.

Figure 3: Toad and Datical — DevOps automation for database development

Code
changes

Track discrete
changes

Automate
testing

Toad Dactical

Automate
staging

Automate
deployment

Automate
code reviews

54321

5

Development managers have the option
to require PL/SQL unit test executions
and minimum code review standards
prior to code check-in, assuring quality
without slowing things down.

2. Automate unit testing (Toad)

Once unit testing is automated, its value
to DevOps becomes apparent.

In the rush to release, it’s easy to
inadvertently slow things down by
passing bugs on and expecting
subsequent processes to detect and
fix them. Figure 4, the Cost of Change
curve plotted by Barry Boehm, shows,

in relative terms, the cost of finding and
addressing bugs at different stages in the
software lifecycle.

The cost ranges from jotting notes on the
back of a napkin in the design stage to
recalling a product, replacing it with an
earlier version and losing precious time
in the production stage.

Toad removes much of the pain at the
development stage by simplifying the
process of creating and running unit
tests. Developers can debug as they
normally would, save that information as
a new unit test and accumulate the tests

In short, the dilemma
is to find the right
automation tool
that will speed
up database
development and
lower cost without
risking the integrity of
the data.

150×

Re
la

tiv
e

co
st

 to
 fi

x
a

bu
g

Design Development Testing Staging Production

10×
25×

50×

Figure 4: The Cost of Change curve

1×

http://tocodeishuman.com/blog/2013/08/23/revisiting-the-cost-of-change-curve/
http://tocodeishuman.com/blog/2013/08/23/revisiting-the-cost-of-change-curve/

6

in a repository. Over time, they build up
a regression testbed through which they
can run all of their code changes. That
reinforces the best practice of keeping
code and test together.

From the Jenkins continuous integration
(CI) build process, developers can call
automated unit tests hosted on the Toad
Intelligence Central server.

3. Automate code reviews (Toad)

Static code analysis and peer review
are standard practices in application
development, where automation tools for
Java and other languages are common.
But in the database world, the manual
code review process is often a casualty
of the rush to release.

To ensure that consistent standards of
code quality are applied across an entire
database project, Toad provides static
code analysis from top to bottom against
a set of more than 200 rules. The rules
are built around the experience of the
industry’s top database professionals,
and development teams can customize
and add their own rules to enforce
company standards. Toad applies the
rules instantly in the editor — like a
syntax check — so developers can see
where they are violating code quality
as they write. As an option, code must
conform to the rules before check-in
is permitted.

Automated code reviews reinforce
quality naturally, without slowing down
database development. The Toad
Intelligence Central server offers
managers a holistic view of code quality
through consolidated web reports.

4. Automate staging (Datical)

After unit testing, code review and
check-in, the next step traditionally is to
hand off the scripts and code for staging.
That requires manual review by the DBA.

Datical automates the enforcement of
database compliance and governance
requirements before committing the
proposed change. It generates a

summary of changes and an assessment
of how they will affect the database.
Datical applies a rules engine to enforce
in-house practices, technical guidelines
and regulatory standards. Here are
some examples:

• Tables or functions will not be dropped
in production.

• Every change should have a comment.

• Naming conventions must be upheld.

• Statements like DROP or TRUNCATE
should not be used in stored procedures.

• Every change will be associated with a
change management ticket.

When integrated with the build server,
Datical can optionally fail the build if
the rules are violated. Dealing with the
problem then is less expensive than
dealing with it in production, as shown in
Figure 4.

Automating this step makes changing
the database a part of the established,
normal process of application
development. The development team
can move quickly but not at the cost
of safety.

5. Automate deployment (Datical)

With the final stage of automating
deployment, the database development
process has the potential to move as
quickly as application development does.

Datical is designed so that database
developers can efficiently validate,
deploy or roll back only those database
changes necessary to support a
specific capability or requirement as it
is deployed. When there is a problem,
they can segment large changes into
the smallest executable steps, then
immediately pinpoint the cause of pre-
deployment warnings and failures. By
tracking changes based on specific
development activity, Datical reduces
the possibility of human error and
the time spent on database auditing
and governance.

Toad provides static
code analysis from
top to bottom against
a set of more than
200 rules from
industry experts.

With Datical agile database automation,
organizations can shorten the time
it takes to bring applications to
market while eliminating the security
vulnerabilities, costly errors, data loss
and downtime often associated with
current database deployment methods.

7

CONCLUSION

Agile has addressed the development
bottleneck and DevOps incorporates
development and operations to create
fully automated deployment pipelines.
But the urge to go slowly and protect the
database has led to a bottleneck that
keeps organizations from realizing the
overall value of agile and DevOps. When
speed is seen as the enemy of quality,
how can an organization avoid slowing
things down in the name of protecting
the database? How can teams speed up
development without cutting corners or
sacrificing best practices?

The right tools provide the missing
link in an otherwise agile pipeline. A
combination like Toad and Datical can
bring the same degree of automation

enjoyed by application developers to
the database environment: automated
change tracking, unit testing, static code
analysis, staging and deployment.

Database development teams no longer
need to choose among speed, quality
and risk. They can release faster and
respond to customers more quickly while
maintaining quality.

FIND OUT MORE
For more details on how you can shorten
development cycles without compromise,
see the Quest e-book, Getting Agile with
Database Development.

Learn more about Datical’s approach to
DevOps for the database at Datical.com.

Managing code
artifacts in a version
control system is
the best practice
and foundation for
speeding things up.

https://quest.com/whitepaper/getting-agile-with-database-development883325/
https://quest.com/whitepaper/getting-agile-with-database-development883325/
http://www.datical.com/resources/white-papers/devops/

8

© 2016 Quest Software Inc.

ALL RIGHTS RESERVED.

This guide contains proprietary information protected by copyright. The software described in this guide is furnished under a software
license or nondisclosure agreement. This software may be used or copied only in accordance with the terms of the applicable
agreement. No part of this guide may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying and recording for any purpose other than the purchaser’s personal use without the written permission of Quest
Software Inc.

The information in this document is provided in connection with Quest Software products. No license, express or implied, by estoppel
or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Quest Software products.
EXCEPT AS SET FORTH IN THE TERMS AND CONDITIONS AS SPECIFIED IN THE LICENSE AGREEMENT FOR THIS PRODUCT,
QUEST SOFTWARE ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY
RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL QUEST SOFTWARE BE LIABLE FOR ANY DIRECT,
INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS OF PROFITS, BUSINESS INTERRUPTION OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE
THIS DOCUMENT, EVEN IF QUEST SOFTWARE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Quest Software
makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves
the right to make changes to specifications and product descriptions at any time without notice. Quest Software does not make any
commitment to update the information contained in this document.

Patents

Quest Software is proud of our advanced technology. Patents and pending patents may apply to this product. For the most current
information about applicable patents for this product, please visit our website at www.quest.com/legal .

Trademarks

Quest, and the Quest logo are trademarks and registered trademarks of Quest Software Inc. in the U.S.A. and other countries. For
a complete list of Quest Software trademarks, please visit our website at www.quest.com/legal. All other trademarks, servicemarks,
registered trademarks, and registered servicemarks are the property of their respective owners.

WhitePaper-DevOps-DBDevs-DBAs-US-KS-24028

If you have any questions regarding your potential use of this
material, contact:

Quest Software Inc.
Attn: LEGAL Dept
4 Polaris Way
Aliso Viejo, CA 92656

Refer to our Web site (www.quest.com) for regional and international
office information.

